

Delivering Value through Innovation and Dedication

PegaClad Series (338 345 365)

Core: TU-1300 Prepreg: TU-1300P

1 of 3

PegaClad Series is an advanced material designed for Sub6G antenna application. It comprises Dk_3.38, Dk_3.45 and Dk_3.65, to meet most of the antenna deigned application.

PegaClad Series is an advanced material designed for low PIM requirement and meet the antenna designer's need. It is an advanced hydrocarbon-based very low loss material, and it is capable for multi-layer circuit board design with excellent thermal reliability. PegaClad Series is the solution for double side and multi-layer radio frequency designs.

PegaClad Series laminates also exhibit excellent moisture resistance, improved CTE, superior chemical resistance, thermal stability, and also compatible with modified FR-4 processes.

Applications

- Sub6G antenna
- mmWave
- Automotive radars and sensors
- Base Station Antenna
- CPE

Performance and Processing Advantages

- Excellent electrical and thermal properties
- Dielectric constant is 3.38, 3.45, 3.65 \pm 0.05 @ 10GHz
- Stable and flat Dk/Df performance over frequency and temperature variance.
- Compatible with modified FR-4 processes
- Excellent moisture resistance and Lead Free reflow process compatible
- Improved z-axis thermal expansion
- Superior dimensional stability, thickness uniformity and flatness
- Excellent through-hole and soldering reliability

Industry Approvals

IPC-4103 Specification Number: /17

UL File Number: E189572 ANSI Grade: non-ANSI • Flammability Rating: 94V-0

Maximum Operating Temperature: 140°C

UL Registration Product Code: TU-1300 / TU-1300P

Standard Availability

- Thickness: 0.0020" [0.508 mm], 0.0030" [0.762mm], 0.0060" [1.524mm] in panel form
- Copper Foil Cladding: 1/2 and 1 oz with RTF, VLP or HVLP type
- Prepregs: 1078, 1086, 3313 prepreg types available in panel form

	Typical Values	Units	Test Method
Electrical			
Permittivity @ 10GHz Dk_338/345/365	3.38 / 3.45 / 3.65	-	IPC-2.5.5.5C
Loss Tangent @ 10GHz Dk_338/345/365	0.0032/0.0034/0.0036	-	IPC-2.5.5.5C
Thermal Coefficient of DK	30	ppm/°C	IPC-2.5.5.13
Volume Resistivity	~1.3x10 ¹¹	MΩ·cm	IPC-2.5.17.1
Surface Resistivity	~4.3x10 ⁹	МΩ	IPC-2.5.17.1
Electric Strength	> 40	KV/mm	ASTM D149
Thermal			
Tg / DMA Tg / TMA	220 180	°C	IPC-2.4.24.2 IPC-2.4.24.3
Td / TGA	390	°C	IPC-2.4.24.6
Thermal Conductivity	0.48	W/mK	ASTM-5470
CTE-x,y, α1 CTE-z, α1 CTE-z, α2 CTE z-axis	13-16 35 200 1.7	ppm/°C ppm/°C ppm/°C %	IPC-2.4.24C
Dimensional Stability	<0.3	mils/inch	IPC-2.4.4
Thermal Stress, Solder Float, 288°C	> 120 sec		IPC-2.6.8.1 IPC-2.6.16
T-260 T-288 T-300	> 60 min > 60 min > 60 min		IPC-2.4.24.1
Flammability	94V-0		UL 94
Mechanical			
Flexural Strength Lengthwise Crosswise	> 50,000 psi > 40,000 psi		IPC-2.4.4
Peel Strength 1.0 oz. HVLP Cu foil	4~5	lb/in	IPC-2.4.8
Water Absorption, Dk_365/60 mil	0.06	%	IPC-2.6.2.1

- 1. Property values are for information purposes only and not intended for specification.
- 2. Any sales of these products will be governed by the terms and conditions of the agreement under which they are sold.
- 3. This product is based on a patent pending technology.

Delivering Value through Innovation and Dedication

3 of 3

• Offering Combination :

Material Offering	Thickness	Normal PIM	Better PIM	PIM Sensitive
PegaClad 338 PegaClad 345 PegaClad 365	20 mil 30 mil 60 mil			

